Contemporary Management of HFpEF

Feras Bader, MD, MS, MBA (Oxford)
Clinical Professor of Medicine
Advanced Heart Failure and Transplant
Chairman, Middle East Heart Academy

Patient Case

This is a 65-year old lady who presented to the ER with increasing dyspnea and easy fatigability after 8 to 10-meter of level walking. She reported PNDs and occasional orthopnea. Denies chest pain, palpitations, dizziness or syncope.

Risk factors: current 40-pack years of cigarette smoking, HTN, uncontrolled DM, obesity, and dyslipidemia.

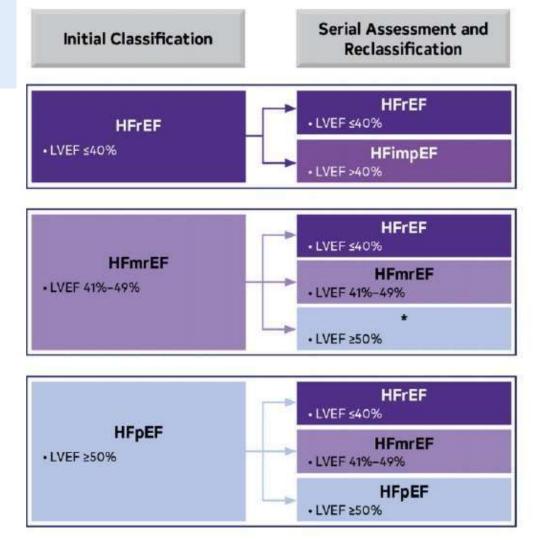
Past Medical History: Triple vessel CABG 10 years ago.

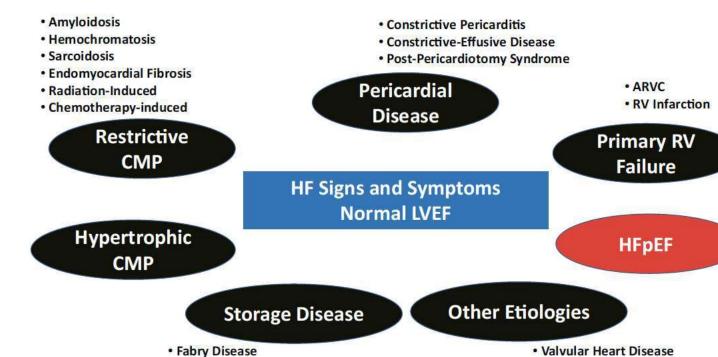
Patient Case

<u>Medications:</u> ASA, Atorvastatin, HCTZ, Spironolactone, Bisoprolol, Lisinopril, Insulin, and Metformin.

<u>Pertinent PE:</u> Obese, comfortable at rest, elevated JVP, regular rhythm, rate of 84 bpm, no murmurs, crackles on both bases, 1+ pitting edema.

<u>Investigations:</u> Serum creatinine 1.2 mg/dl, NT-ProBNP of 1480 pg/ml. ECG showed NSR with voltage criteria for LVH.

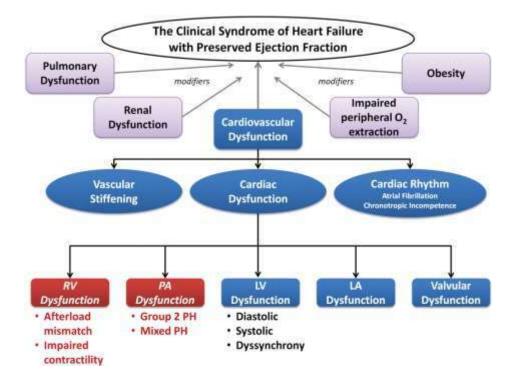

Echocardiogram showed biatrial enlargement, eccentric LVH with LVEF of 52%, grade 2 diastolic dysfunction, and mild pulmonary hypertension.


Historic Variability in Definition

Trial Name	Age, NYHA functional Class	LVEF (%)	Natriuretic Peptides	HF Hospitalization
TOPCAT 99	Age ≥50 years NYHA functional class II-IV	LVEF≥45%	BNP ≥100 pg/mL or NT-proBNP ≥360 pg/mL	Within previous 12 months, with management of HF a major component
PARAGON-HF 100	Age≥50 years NYHA functional class II-IV	LVEF≥45% and LAE LVH	If NSR, NT-proBNP >200 pg/mL If AF: >600 pg/mL Or if no previous hospitalization and If NSR: NT-proBNP >300 pg/mL, if AF: NT-proBNP >900 pg/mL	Within previous 9 months
Preserved 106	Age≥18 years NYHA functional class II-IV (≥3 months)	LVEF > 40% (no prior history of LVEF <40%)	NT-proBNP > 300 pg/mL in NSR or > 900 pg/mL in AF	Within 12 months OR evidence of structural changes (LAE or increased LVM) on echo
DELIVER 107	Age≥40 years NYHA functional class II-IV	(LVEF >40% and evidence of struc- tural heart disease (ie, LAE or LVH)	Elevated natriuretic peptides	Medical history of HF ≥6 weeks before enrolment with at least intermittent need for diuretic treatment

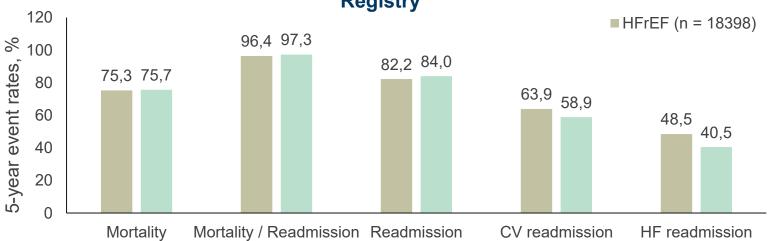
2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure

A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines



LAMP2 CMP

PRKAG2 CMP


Pulmonary Arterial Hypertension

High Output Heart Failure
Renal/Hepatic Failure

Mortality and Readmission Rates are Similarly High in HFrEF and HFpEF Following Hospitalization for HF

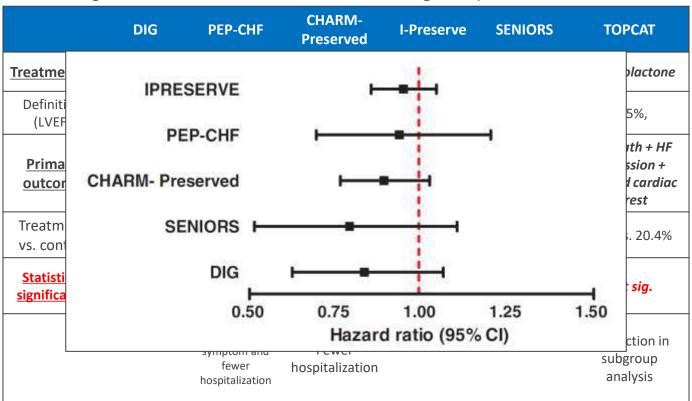
Five-year outcomes in patients hospitalized with HF in the GWTG-HF Registry*

In a separate analysis, patients with HFmrEF (LVEF 41%-49%) make up 8%-12% of all patients with HF, and have a similar mortality rate to those with HFrEF and HFpEF.^{1,2}

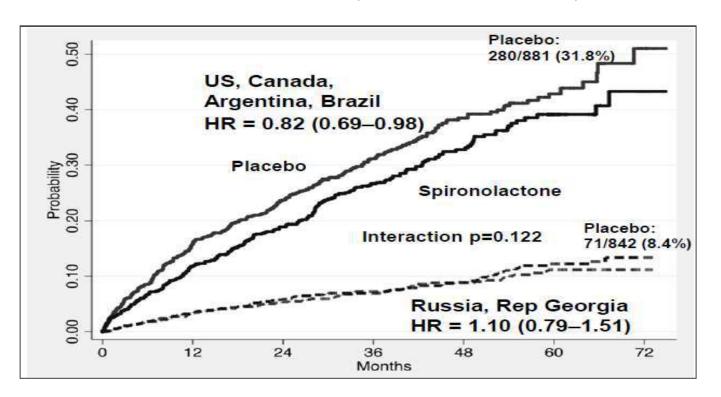
CV, cardiovascular; GWTG-HF, Get With the Guidelines—Heart Failure; HF, heart failure; HFmrEF, HF with mid-range ejection fraction; HFpEF, HF with preserved ejection fraction; HFrEF. HF with reduced ejection fraction; LVEF. left ventricular ejection fraction.

^{*}Data from 39,982 patients aged ≥65 years with HF hospitalizations in the GWTG-HF registry, of whom 45.8% had HFpEF and 46.0% had HFrEF. GWTG-HF registry data were combined with US Centers for Medicare and Medicaid Services claims made between January 1, 2005, and December 30, 2009, with 5 years of follow-up through December 2014.

1. Shah KS et al. J Am Coll Cardiol. 2017;70(20):2476–2486; 2. Kumar V et al. J Card Fail. 2023;29(2):124-134.


Neurohormonal blockades for HFpEF

Digoxin, ACEI, ARBs, BB and spironolactone were tested


	DIG	PEP-CHF	CHARM- Preserved	I-Preserve	SENIORS	TOPCAT
<u>Treatment</u>	Digoxin	Perindopril	Candesartan	Irbesartan	Nebivolol	Spironolactone
Definition (LVEF)	>45%	40-50%	>40%	≥45%	≥35%,	≥45%,
Primary outcome	HF admission + HF mortality	all-cause mortality + HF admission	CV death + HF admission	All-cause mortality + CV admission	All-cause mortality + CV admission	CV death + HF admission + aborted cardiac arrest
Treatment vs. control	21 vs. 24%	HR 0.692	HR 0.86	HR 0.95	HR 0.81	18.6 vs. 20.4%
Statistical significance	Not sig.	Not sig.	Not sig.	Not sig.	Not sig.	Not sig.
		Improved symptom and fewer hospitalization	Fewer hospitalization			Interaction in subgroup analysis

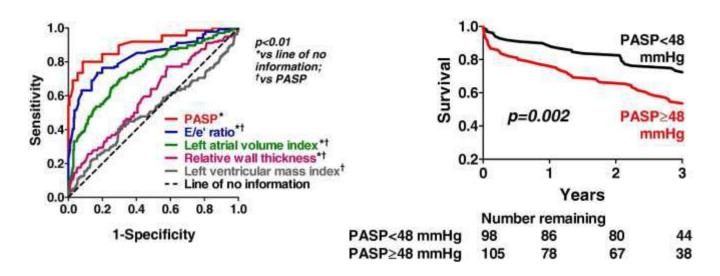
Neurohormonal blockades for HFpEF

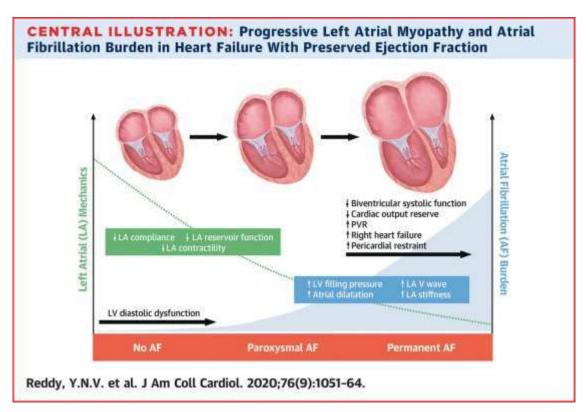
No significant benefit observed from six large HFpEF clinical trials



Spironolactone for Heart Failure with Preserved Ejection Fraction (TOPCAT Trial)

PH and RV dysfunction in HFpEF


- PH is <u>highly prevalent</u> and often <u>severe</u> in HFpEF
- Pulmonary venous HTN does not fully account for PH severity, suggesting that
 a component of PAH also contributes to PH in HFpEF
- The PASP <u>distinguishes HFpEF from HTN</u> with better diagnostic performance than other parameters.

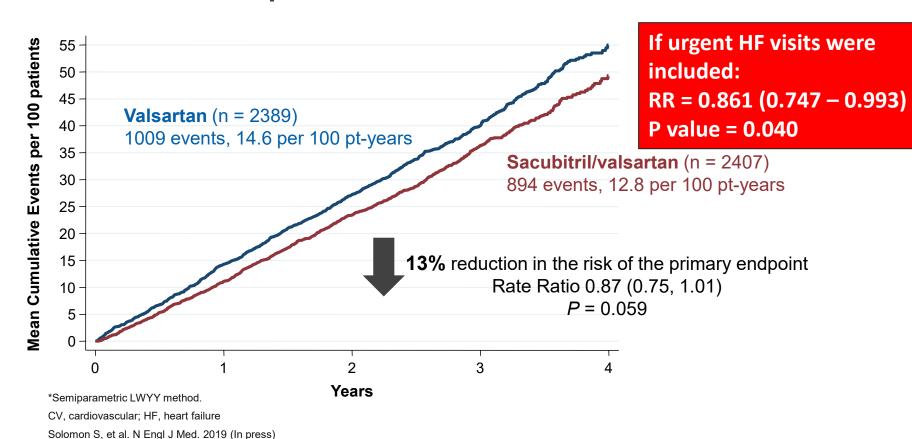

Lam CS et al. J Am Coll Cardiol 2009

PH and RV dysfunction in HFpEF

PASP is independently <u>associated with mortality</u> in HFpEF

Lam CS et al. J Am Coll Cardiol 2009

Yogesh N.V. Reddy et al. J Am Coll Cardiol 2020;76:1051-1064

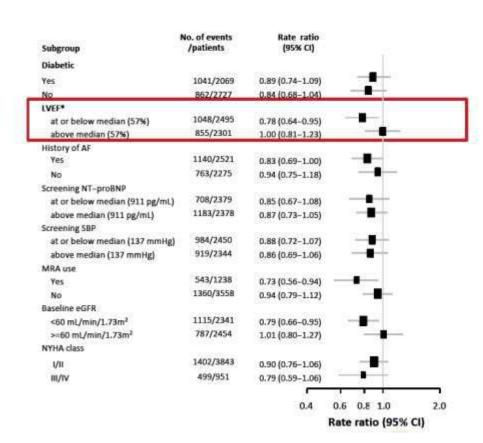

PARAGON-HF

Angiotensin-Neprilysin Inhibition in Heart Failure with Preserved Ejection Fraction

S.D. Solomon, J.J.V. McMurray, I.S. Anand, J. Ge, C.S.P. Lam, A.P. Maggioni, F. Martinez, M. Packer, M.A. Pfeffer, B. Pieske, M.M. Redfield, J.L. Rouleau, D.J. van Veldhuisen, F. Zannad, M.R. Zile, A.S. Desai, B. Claggett, P.S. Jhund, S.A. Boytsov, J. Comin-Colet, J. Cleland, H.-D. Düngen, E. Goncalvesova, T. Katova, J.F. Kerr Saraiva, M. Lelonek, B. Merkely, M. Senni, S.J. Shah, J. Zhou, A.R. Rizkala, J. Gong, V.C. Shi, and M.P. Lefkowitz, for the PARAGON-HF Investigators and Committees

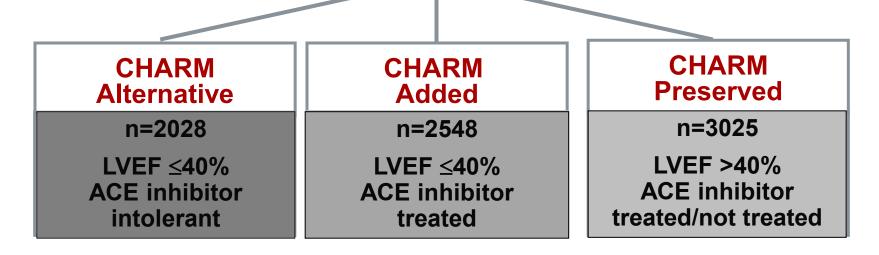
An International multicenter, randomized, double-blind, parallel group, active –controlled, event driven trial comparing the long-term efficacy and safety of valsartan vs sacubitril/valsartan in patients with chronic HFpEF (LVEF > 45%)

Primary endpoint: Recurrent event analysis of total HF hospitalizations and CV death*

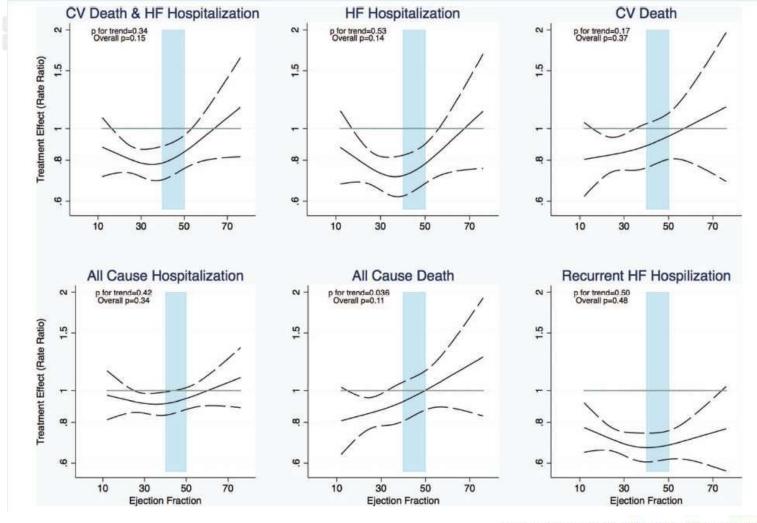


0

Pre-specified subgroups for primary endpoint

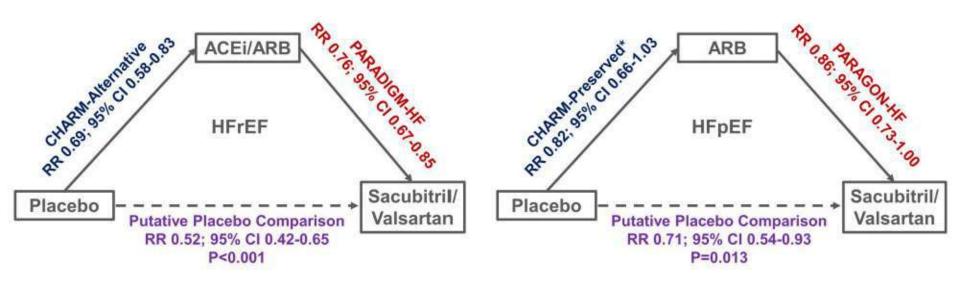

Evidence for overall heterogeneity

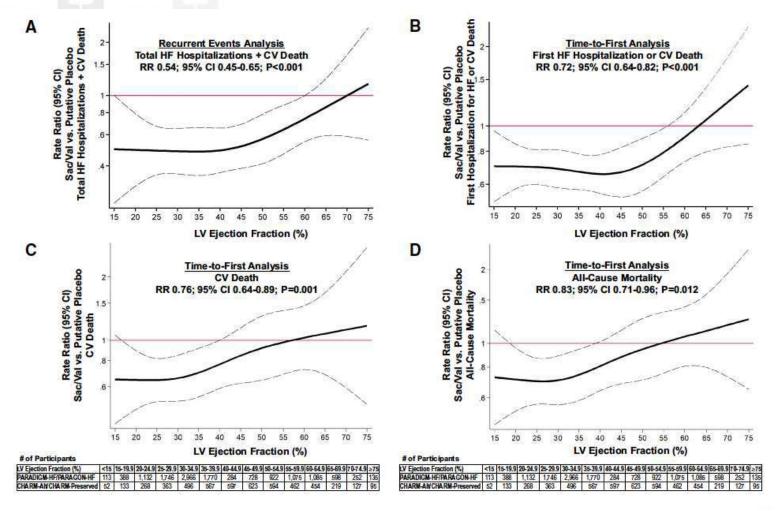
Subgroup	No. of events /patients	Rate ratio (95% CI)		-0
Overall	1903/4796	0.87 (0.75-1.01)		
Age (years)				
Less than 65 years	276/825	0.99 (0.64-1.53)		
65 years or older	1627/3971	0.85 (0.73-0.99)		-
Age (years)				\$55.15
Less than 75 years	938/2597	0.82 (0.66-1.02)		
75 years or older	965/2199	0.92 (0.76-1.11)		-
Sex*				
Male	980/2317	1.03 (0.85-1.25)		_
Female	923/2479	0.73 (0.59-0.90)		——————————————————————————————————————
Race		- ONE HANCE OF BUILDING		773.79
Caucasian	1542/3907	0.83 (0.71-0.97)		
Black	89/102	0.69 (0.24-1.99)	5	
Asian	237/607	1.25 (0.87-1.79)		-
Other	35/180	1.03 (0.47-2.28)		\longrightarrow
Region				
North America	478/559	0.80 (0.57-1.14)		-
Latin America	83/370	1.33 (0.75~2.36)		$-\!$
Western Europe	544/1390	0.69 (0.53-0.89)		
Central Europe	466/1715	0.97 (0.76-1.24)		_
Asia/Pacific	332/762	1.10 (0.79-1.52)		
				 l
			0.4	0.6 0.8 1.0 2.0
Multivariate inter-	action $p < 0.05$			Rate ratio (95% CI)



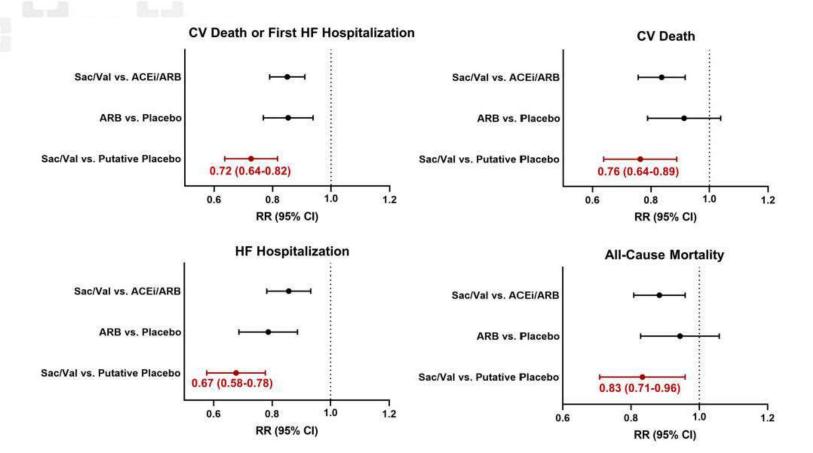
CHARM Program

3 component trials comparing candesartan to placebo in patients with symptomatic heart failure

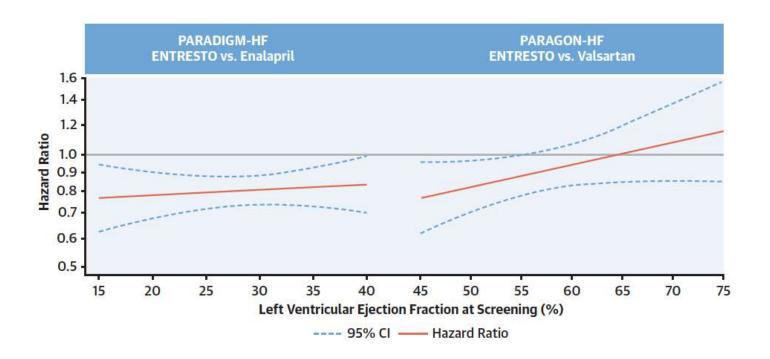

Primary outcome for each trial: CV death or CHF hospitalisation Primary outcome for Overall Program: All-cause death



European Journal of Heart Failure (2018) 20, 1230-1239


A putative placebo analysis of the effects of sacubitril/valsartan in heart failure across the full range of ejection fraction

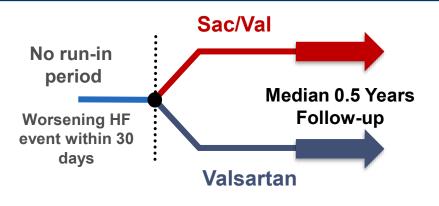
Muthiah Vaduganathan ¹, Pardeep S. Jhund ², Brian L. Claggett¹, Milton Packer ^{3,4}, Jiri Widimský ⁵, Petar Seferovic ⁶, Adel Rizkala⁷, Martin Lefkowitz⁷, Victor Shi⁷, John J.V. McMurray ², and Scott D. Solomon¹*



European Heart Journal (2020) 41, 2356-2362

European Heart Journal (2020) 41, 2356-2362

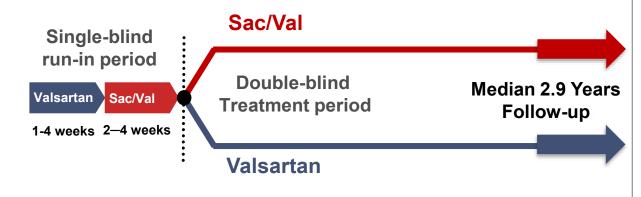
In both trials, the lower the EF, the greater the reduction in HR


Lam C, Solomon S. JACC 2021; 77 (25)

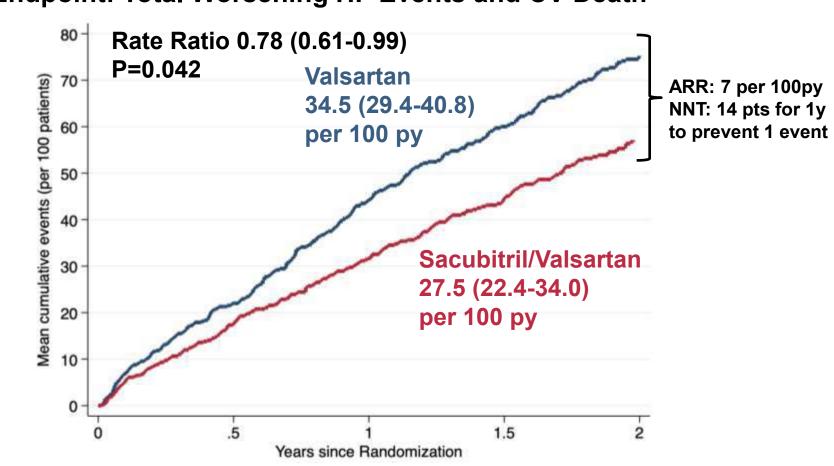
Entry criteria

Study design

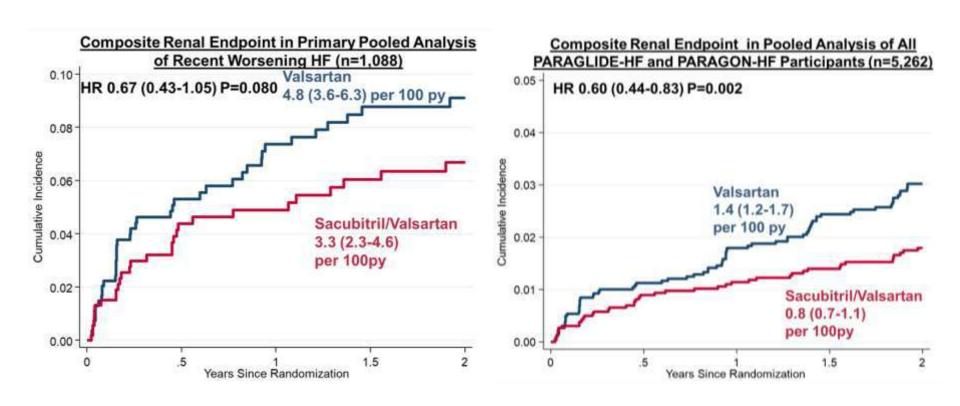
PARAGLIDE-HF (n=466)


- Age ≥18 years
- HF with LVEF >40%
- Current or recent worsening HF event (HF hospitalization, urgent HF visit, or ED stay)
- Elevated natriuretic peptides

Mentz RJ, et al. J Card Fail 2023


PARAGON-HF (n=4,796)

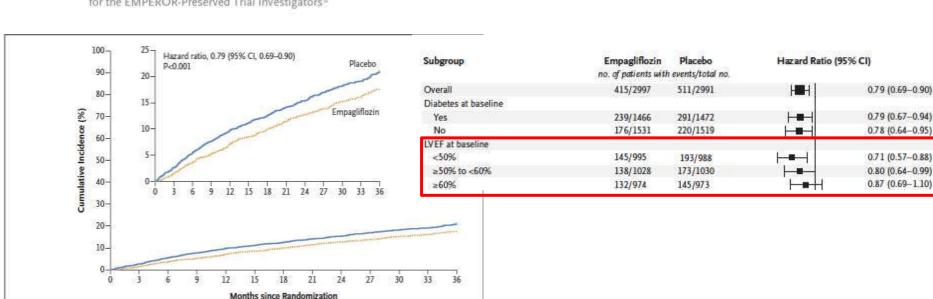
- Age ≥50 years
- HF with LVEF ≥45%
- NYHA class II-IV
- Elevated natriuretic peptides
- Structural heart disease (LVH or LAE)


Solomon SD, et al. JACC HF 2017

Primary Pooled Analysis (n=1,088) Primary Endpoint: Total Worsening HF Events and CV Death

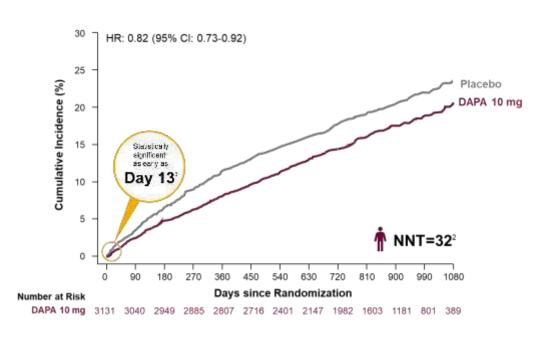
Secondary Endpoint: Renal Composite

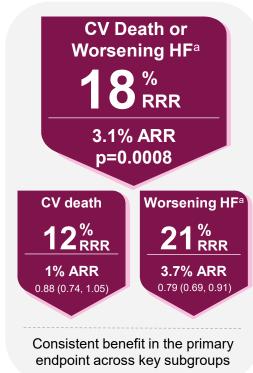
Time to first ≥50% decline in eGFR from baseline, ESRD, or renal death



Empagliflozin in Heart Failure with a Preserved Ejection Fraction

S.D. Anker, J. Butler, G. Filippatos, J.P. Ferreira, E. Bocchi, M. Böhm, H.-P. Brunner-La Rocca, D.-J. Choi, V. Chopra, E. Chuquiure-Valenzuela, N. Giannetti, J.E. Gomez-Mesa, S. Janssens, J.L. Januzzi, J.R. Gonzalez-Juanatey, B. Merkely, S.J. Nicholls, S.V. Perrone, I.L. Piña, P. Ponikowski, M. Senni, D. Sim, J. Spinar, I. Squire, S. Taddei, H. Tsutsui, S. Verma, D. Vinereanu, J. Zhang, P. Carson, C.S.P. Lam, N. Marx, C. Zeller, N. Sattar, W. Jamal, S. Schnaidt, J.M. Schnee, M. Brueckmann, S.J. Pocock, F. Zannad, and M. Packer, for the EMPEROR-Preserved Trial Investigators*


No. at Risk Placebo


Empagliflozin

NEJM 2021; DOI: 10.1056/NEJMoa2107038

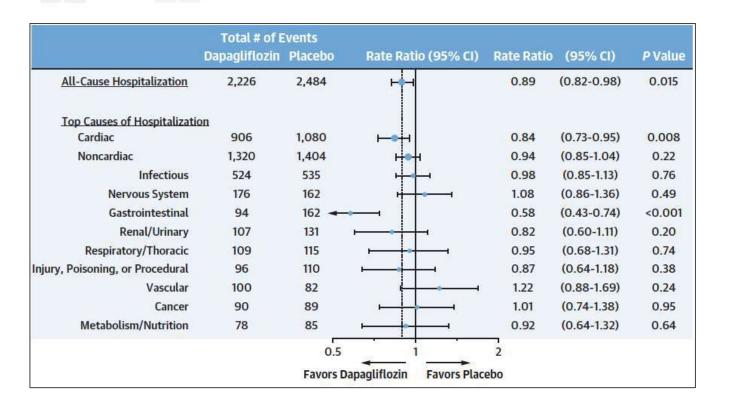
Dapagliflozin significantly reduced the risk of CV death and worsening HF^a in patients with HFmrEF and HFpEF¹

All-cause mortality was also reduced in the dapagliflozin group All-cause mortality % RRR ~1% ARR 0.94 (0.83, 1.07) **Quality of life** P<0.001

 $^{^{}a}Nominal\ significance\ at\ Day\ 13\ (HR,\ 0.45;\ 95\%\ CI,\ 0.20-0.99;\ p=0.046),\ with\ sustained\ statistical\ significance\ starting\ at\ Day\ 15.$

^{1.} Solomon SD et al. N Engl J Med. 2022;387(12):1089-1098

Consistent Treatment Benefit Across All Prespecified Subgroups


Characteris	stic	DAPA n/N	PBO n/N		HR (95% CI)
Overall effe	ect	512/3131	610/3132	H ar t	0.82 (0.73-0.92)
A	≤72	247/1545	306/1604	H = H	0.82 (0.69-0.97)
Age, yr	>72	265/1586	304/1528	+■+	0.81 (0.69-0.96)
Sex	Female	195/1364	243/1383	H = H	0.81 (0.67-0.97)
Sex	Male	317/1767	367/1749	HEH	0.82 (0.71-0.96)
	Asian	97/630	106/644	-	0.91 (0.69-1.20)
Race	Black	21/81	19/78	—	1.08 (0.58-2.01)
Race	White	372/2214	461/2225	H = H	0.79 (0.69-0.90)
	Other	22/206	24/185	←	0.83 (0.46-1.48)
Region	Europe/ Saudi Arabia	261/1494	309/1511	⊢⊞- 4 ⊢-≣-	0.83 (0.70-0.98)
	Asia	92/607	103/619	⊢ ■-	0.89 (0.67-1.18)
	Latin America	70/602	87/579	⊢ ■	0.78 (0.57-1.07)
	North America	89/428	111/423	⊢■⊣	0.75 (0.57-1.00)
T2D	Yes	270/1401	317/1405	⊢ ■⊢	0.83 (0.70-0.97)
120	No	242/1730	293/1727	⊢ ■	0.81 (0.68-0.96)
AF/AFL	Yes	227/1327	271/1317	⊢ ■-1	0.81 (0.68-0.97)
on ECG	No	285/1803	339/1814	⊢ ■•	0.82 (0.70-0.96)
вмі,	<30	275/1734	302/1736	HEH	0.89 (0.75-1.04)
kg/m²	≥30	236/1395	308/1392		0.74 (0.63-0.88)
				0,50 ¹ 1,25	2

Dapagliflozin Better Placebo Better

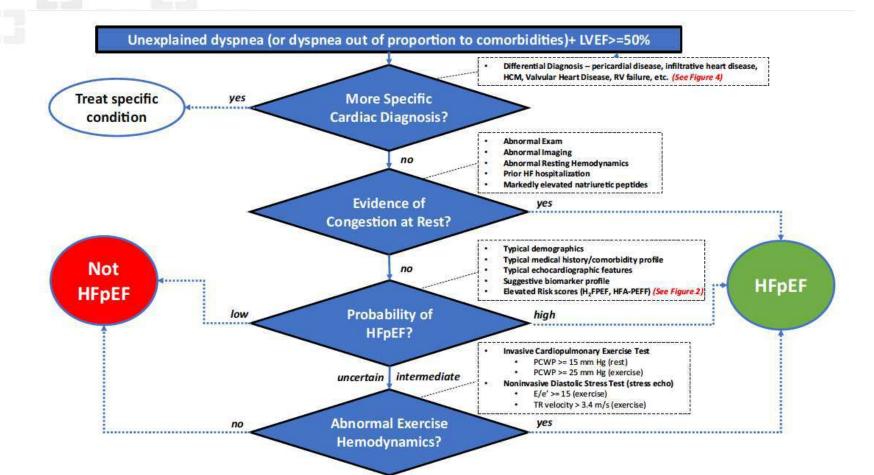
Characteristic		DAPA n/N	PBO n/N		HR (95% CI)
Overall effect		512/3131	610/3132	H H	0.82 (0.73-0.92)
NOWIA I	II	331/2314	411/2399	H	0.81 (0.70-0.94)
NYHA class	III or IV	181/817	198/732	⊢ ■	0.80 (0.65-0.98)
	≤49	207/1067	229/1049	⊢ ■+	0.87 (0.72-1.04)
LVEF, %	50-59	174/1133	211/1123	⊢ =	0.79 (0.65-0.97)
	≥60	131/931	170/960	⊢ ■	0.78 (0.62-0.98)
NT-proBNP,	≤1011	173/1555	208/1578	H = H	0.84 (0.68-1.02)
pg/mL	>1011	339/1576	402/1553	н	0.79 (0.69-0.92)
Enrollment	Yes	93/328	113/326	⊢	0.78 (0.60-1.03)
during or within 30 days of hHF	No	419/2803	497/2806	H	0.82 (0.72-0.94)
Prior LVEF	Yes	92/572	119/579	⊢	0.74 (0.56-0.97)
≤40%	No	420/2559	491/2553	HEH	0.84 (0.73-0.95)
eGFR,	<60	289/1516	355/1554	H	0.81 (0.69-0.94)
mL/min/1.73 m ²	≥60	223/1615	255/1577	H = -	0.84 (0.70-1.00)
CDD	≤128	280/1568	300/1590	H 11 4	0.93 (0.79-1.10)
SBP, mmHg	>128	232/1563	310/1542	H = H	0.71 (0.60-0.85)
				0.50 11.25	

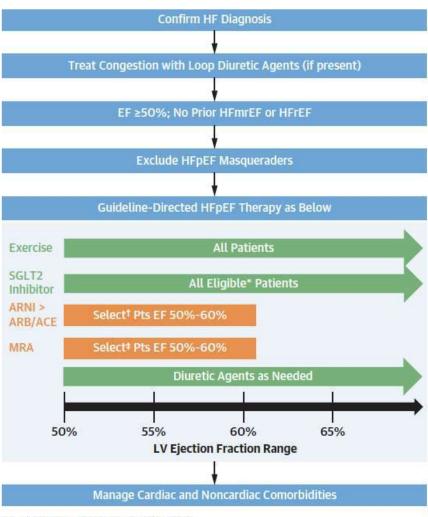
Dapagliflozin Better Placebo Better

All Cause Hospitalizations- 11% Reduction

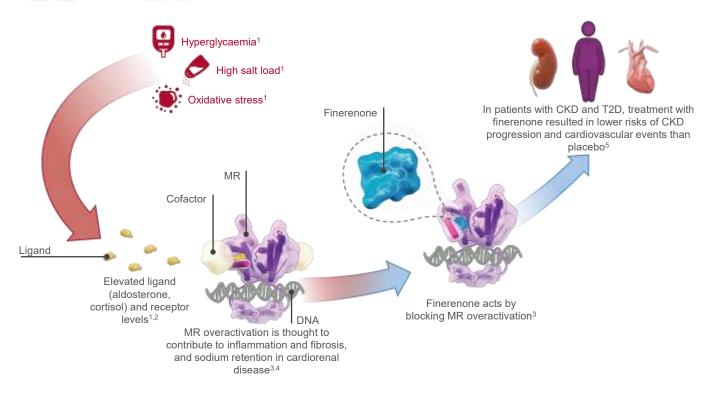
ARNI vs. SGLT2i:PARAGON- HF and EMPEROR-PRESERVED Similar trends of response to therapy with increasing EF

PARAGON, EMPEROR, and TOPCAT


How to Manage Heart Failure With Preserved Ejection Fraction



Practical Guidance for Clinicians

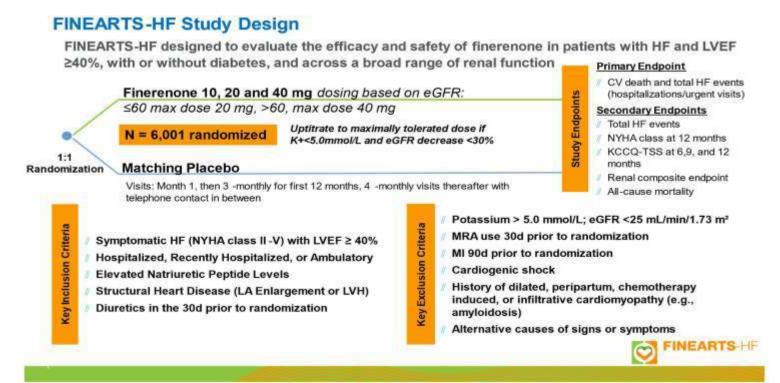

Akshay S. Desai, MD, MPH, a Carolyn S.P. Lam, MBBS, PhD, b,c John J.V. McMurray, MD, Margaret M. Redfield, MDe

Initial Classification	LVEF, %	Diagnostic Contingencies	Initial Approach	Potential LVEF Trajectories and Treatment Implications
HFpEF	≥50	Symptoms of HF and evidence of elevated filling pressure (congestion) at rest or with exercise ^a	Treat as HFpEF	LVEF may stay stable or decline Treat as HFrEF if LVEF declines <50%
HFmrEF	41-49	Symptoms of HF and evidence of elevated filling pressure (congestion) at rest or with exercise ^a	Treat as HFrEF	LVEF may improve or decline Treat as HFrEF even if LVEF subsequently improve
HFrEF	≤40	Symptoms of HF or asymptomatic	Treat as HFrEF	LVEF may improve to >40% (HFimpEF) Treat as HFrEF even if LVEF subsequently improves

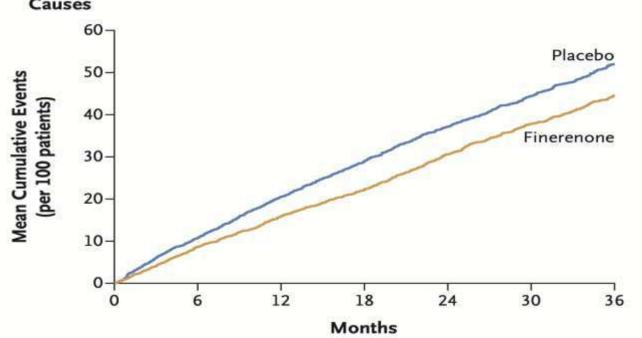
Finerenone, a novel, selective, nonsteroidal MRA, blocks MR overactivation

Finerenone is approved by the FDA and is indicated to reduce the risk of sustained eGFR decline, ESKD, CV death, non-fatal MI, and HHF in adult patients with CKD associated with T2D. Finerenone is currently under review by other health authorities, including the EMA

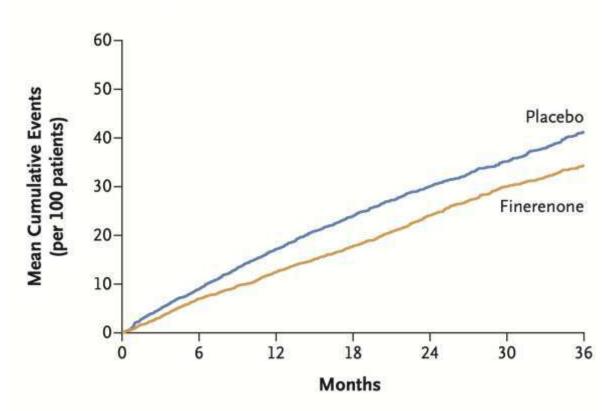
^{1.} Buonafine M, et al. Am J Hypertens 2018;31:1165–1174; 2. Buglioni A, et al. Hypertension 2015;65:45–53; 3. Agarwal R, et al. Nephrol Dial Transplant 2020; doi: 10.1093/ndt/gfaa294;

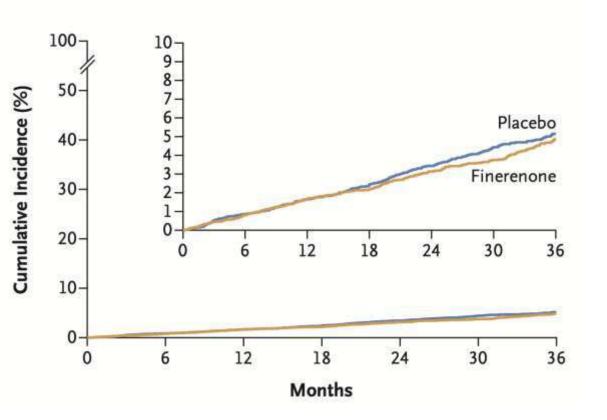

^{4.} Khan NUA & Movahed A. Rev Cardiovasc Med 2004;5:71-81; 5. Bakris GL, et al. N Engl J Med 2020;383:2219-2229

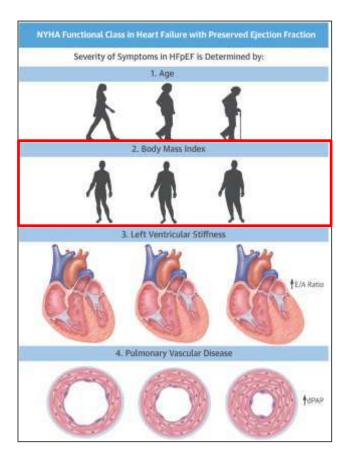
ORIGINAL ARTICLE


Finerenone in Heart Failure with Mildly Reduced or Preserved Ejection Fraction

S.D. Solomon, J.J.V. McMurray, M. Vaduganathan, B. Claggett, P.S. Jhund, A.S. Desai, A.D. Henderson, C.S.P. Lam, B. Pitt, M. Senni, S.J. Shah, A.A. Voors, F. Zannad, I.Z. Abidin, M.A. Alcocer-Gamba, J.J. Atherton, J. Bauersachs, M. Chang-Sheng, C.-E. Chiang, O. Chioncel, V. Chopra, J. Comin-Colet, G. Filippatos, C. Fonseca, G. Gajos, S. Goland, E. Goncalvesova, S. Kang, T. Katova, M.N. Kosiborod, G. Latkovskis, A.P.-W. Lee, G.C.M. Linssen, G. Llamas-Esperón, V. Mareev, F.A. Martinez, V. Melenovský, B. Merkely, S. Nodari, M.C. Petrie, C.I. Saldarriaga, J.F.K. Saraiva, N. Sato, M. Schou, K. Sharma, R. Troughton, J.A. Udell, H. Ukkonen, O. Vardeny, S. Verma, D. von Lewinski, L. Voronkov, M.B. Yilmaz, S. Zieroth, J. Lay-Flurrie, I. van Gameren, F. Amarante, P. Kolkhof, and P. Viswanathan, for the FINEARTS-HF Committees and Investigators*

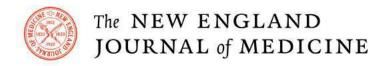

Finerenone in patients with heart failure with mildly reduced or preserved ejection fraction: Rationale and design of the FINEARTS-HF trial


A Total Worsening Heart Failure Events and Death from Cardiovascular Causes


B Total Worsening Heart Failure Events

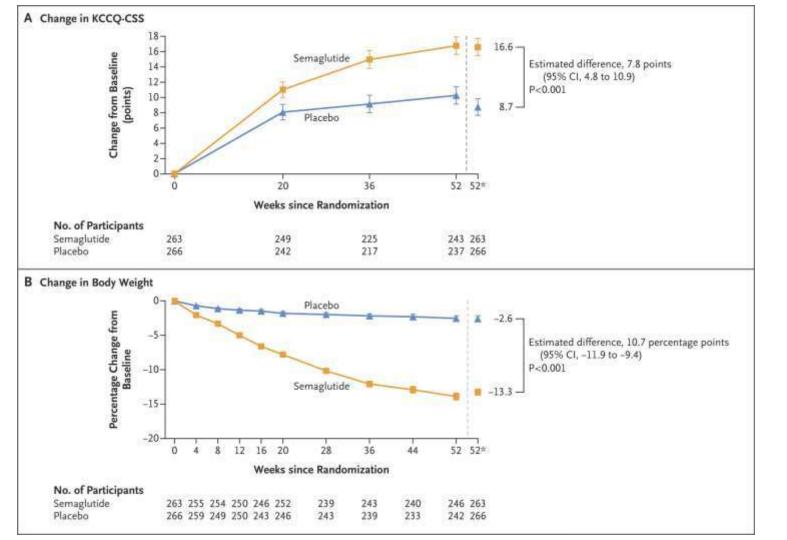
Death from Cardiovascular Causes

Obese phenotypes of HFpEF

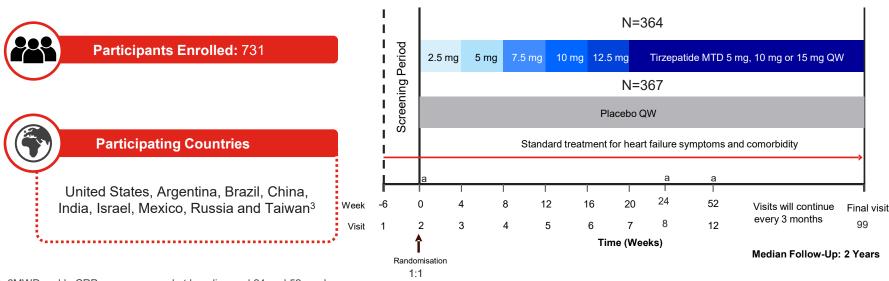


Predictor of in-hospital mortality

Variables	Adjusted OR * (95% CI)	р
ВМІ	3.542 (1.362-9.212)	0.010
SBP < 100mmHg	3.472 (1.602-7.525)	0.002
WBC ≥ 10000/mcL	2.184 (1.135-4.203)	0.019
Na < 135mmol/L	2.628 (1.360-5.079)	0.004
Cr ≥ 2.0mg/dL	2.224 (1.030-4.804)	0.042


Obesity is common in HFpEF,
 related with poor functional capacity
 and clinical outcome

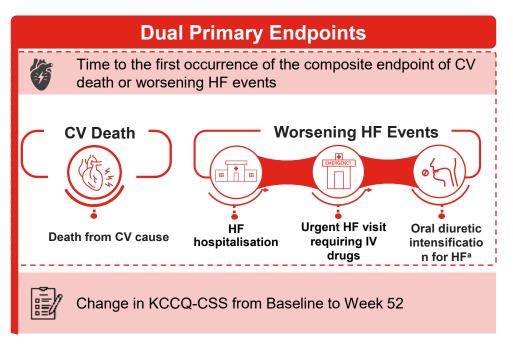
Dalos D, et al. J Am Coll Cardiol. 2016


Semaglutide in Patients with Heart Failure with Preserved Ejection Fraction and Obesity

Mikhail N. Kosiborod, M.D., Steen Z. Abildstrøm, Ph.D., Barry A. Borlaug, M.D., Javed Butler, M.D., Søren Rasmussen, Ph.D., Melanie Davies, M.D., G. Kees Hovingh, M.D., Ph.D., Dalane W. Kitzman, M.D., Marie L. Lindegaard, M.D., D.M.Sc., Daniel V. Møller, M.D., Ph.D., Sanjiv J. Shah, M.D., Marianne B. Treppendahl, M.D., Ph.D., et al., for the STEP-HFpEF Trial Committees and Investigators'

SUMMIT Trial Design

SUMMIT is a randomised, multicentre, international, placebo-controlled, double-blind, parallel-arm Phase 3 study. The study was designed to evaluate the efficacy and safety of once-weekly tirzepatide in participants with HFpEF and obesity.

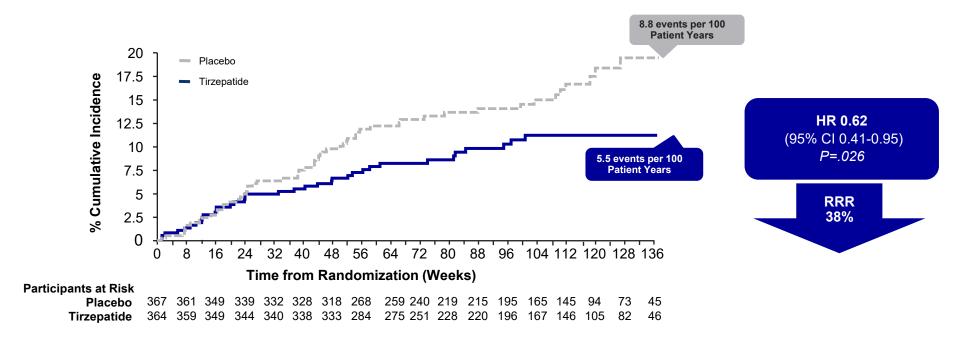


^aKCCQ, 6MWD and hsCRP were measured at baseline and 24 and 52 weeks.

HFpEF=Heart Failure With Preserved Ejection Fraction; hsCRP=High-Sensitivity C-Reactive Protein; KCCQ=Kansas City Cardiomyopathy Questionnaire; MTD=Maximum Tolerated Dose; QW=Once Weekly; 6MWD=6-Minute Walk Distance.

Packer M, et al. NEJM. 2024;doi:10.1056/NEJMoa2410027 (Ahead of print).

SUMMIT Trial Endpoints

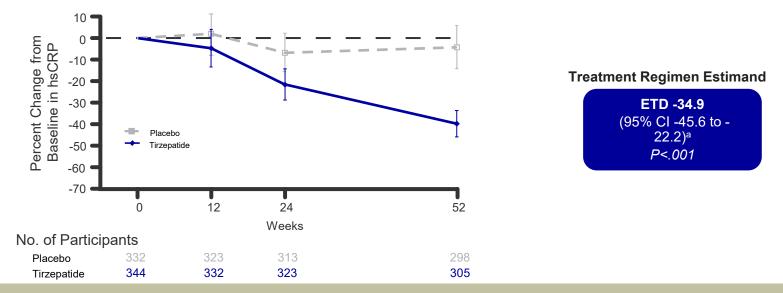

Key Secondary Endpoints

- Change from baseline to Week 52 in 6MWD
- Percent change from baseline to Week 52 in body weight
- · Change from baseline to Week 52 in hsCRP

CV=Cardiovascular; HF=Heart Failure; hsCRP=High-Sensitivity C-Reactive Protein; IV=Intravenous; KCCQ-CSS=Kansas City Cardiomyopathy Questionnaire Clinical Summary Score; 6MWD=6-Minute Walk Distance.

^aDiuretic intensification in the absence of worsening heart failure was not designated as an event.

SUMMIT Primary Endpoint: Time to First Event for CV Death or Worsening HF Event^a

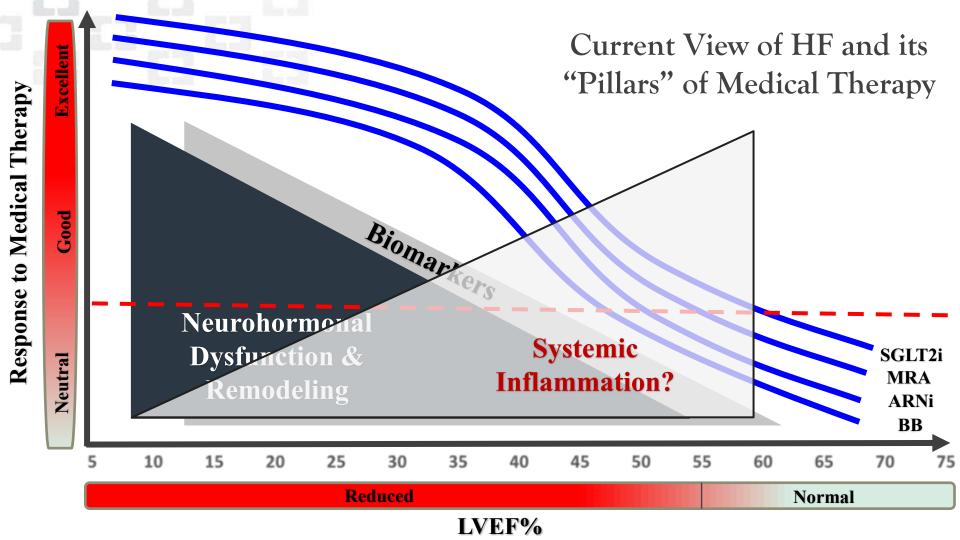


^aWorsening HF event was defined as heart failure symptoms requiring hospitalization, intravenous drugs for HF in an urgent care setting or intensification of oral diuretics. Changes in oral diuretics without worsening HF was not designated as an event.

CI=Confidence Interval; CV=Cardiovascular; HF=Heart Failure; HR=Hazard Ratio; RRR=Relative Risk Reduction.

Packer M, et al. NEJM. 2024;doi:10.1056/NEJMoa2410027 (Ahead of print).

Change From Baseline to Week 52 in hsCRP Key Secondary Endpoint



A greater reduction in hsCRP was observed in patients on tirzepatide compared to placebo.

CI=Confidence Interval; ETD=Estimated Treatment Difference; hsCRP=High Sensitivity C-reactive Protein; LSM=Least-Square Mean; MMRM=Mixed Model Repeated Measures; SE=Standard Error; TRE=Treatment Regimen Estimand.

Packer M, et al. NEJM. 2024;doi:10.1056/NEJMoa2410027 (Ahead of print).

^aData were log-transformed before analysis. Tirzepatide vs. placebo: ***P<0.001. Data presented are LSM±SE with 95% CI.

Summary

- Preserved EF is <u>not necessarily Normal EF!</u>
- Normal EF proved to be a moving target: <u>55 is new 40!</u>, perhaps a little higher in women than men based on accumulating evidence.
- All four "pillars" of HF therapy have evidence to support their use in abnormal EF (reduced or preserved), more so with ARNI and SGLT2i as it gets closer to "normal", and more so on hospitalizations than mortality at that range.
- New targets for medical therapy in HFpEF are being identified.

Submit your abstracts

